Cách tính delta, delta phẩy: Công thức & bài tập vận dụng Update 09/2021

Cách tính deltadelta phẩy trong phương trình bậc 2 là một kiến thức quan trọng và là nền tảng cho các bài toán từ cơ bản đến nâng cao của toán lớp 9. Bài viết này sẽ trình bày đến các bạn chi tiết công thức tính delta, delta phẩy ứng dụng giải phương trình bậc 2 và hàng loạt các bài tập mẫu vận dụng.

Giới thiệu về phương trình bậc 2

Phương trình bậc 2 là phương trình có dạng: ax² + bx + c = 0

→ Trong đó a # 0, a, b là hệ số, c là hằng số

Công thức nghiệm phương trình bậc 2

Để giải phương trình bậc 2 cơ bản, chúng ta sử dụng 2 công thức nghiệm delta và delta phẩy. Để ứng dụng giải các bài toán biện luận nghiệm, ta sử dụng định lý Vi-et.

Công thức tính delta

Ta xét phương trình: ax² + bx +c = 0, Với biệt thức delta: Δ = b² – 4ac. Sẽ có 3 trường hợp:

– Nếu Δ < 0 thì phương trình vô nghiệm

– Nếu Δ = 0 thì phương trình có nghiệm kép: 

– Nếu Δ > 0 thì phương trình có hai nghiệm phân biệt: 

Trong trường hợp nếu b = 2b′ thì sử dụng công thức delta phẩy dưới đây.

Công thức tính delta phẩy

Ta xét phương trình: ax² + bx +c = 0. Với biệt thức delta phẩy: Δ′ = b′² – ac. Trong đó:

→ Công thức trên còn được gọi là công thức nghiệm thu gọn.

Tương tự như delta thì delta phẩy chúng ta cũng có 3 trường hơp bao gồm:

– Nếu Δ′ < 0  thì phương trình vô nghiệm

– Nếu Δ′ = 0 thì phương trình có nghiệm kép:

– Nếu Δ′ > 0 thì phương trình có hai nghiệm phân biệt:

Hệ thức Viet

Cho phương trình bậc 2 một ẩn: ax2 + bx + c = 0 (a≠0) (*) có 2 nghiệm x1 và x2. Khi đó 2 nghiệm này thỏa mãn hệ thức sau: thì ta có Công thức Vi-et như sau:

Hệ thức Viet dùng để giải quyết nhiều dạng bài tập khác nhau liên quan đến hàm số bậc 2 và các bài toán quy về hàm số bậc 2. Xong 3 công thức nghiệm bên trên thì chúng ta đã có thể thoải mái làm bài tập rồi. Hãy cùng đến các bài tập vận dụng ngay dưới đây.

Phân dạng bài tập sử dụng công thức delta, delta phẩy

Ứng với 3 công thức trên, chúng ta có các dạng bài tập tương ứng: Giải phương trình bậc 2 một ẩn cơ bản và biện luận nghiệm phương trình bậc 2 một ẩn. Để giải các dạng bài tập này, chúng ta cần nắm vững công thức nghiệm delta, công thức nghiệm delta phẩy và định lý Vi-et (dùng để giải các bài toán biện luận tham số).

Dạng 1: Giải phương trình bậc 2 một ẩn

Dạng 2: Biện luận nghiệm phương trình bậc 2 một ẩn

Bài tập vận dụng 

Bài 1: Cho phương trình x² – 2(m+1)x + m² + m +1 = 0

Tìm các giá trị của m để phương trình có nghiệm

Trong trường hợp phương trình có nghiệm là x1, x2 hãy tính theo m

Bài 2: Chứng minh rằng phương trình sau có nghiệm với mọi a, b:

(a+1) x² – 2 (a + b)x + (b- 1) = 0

Bài 3:  Giả sử phương trình bậc hai x² + ax + b + 1 = 0 có hai nghiệm dương. Chứng minh rằng a² + b² là một hợp số.

Bài 4: Cho phương trình (2m – 1)x² – 2(m + 4 )x +5m + 2 = 0 (m #½)

Tìm giá trị của m để phương trình có nghiệm.

Khi phương trình có nghiệm x1, x2, hãy tính tổng S và tích P của hai nghiệm theo m.

Tìm hệ thức giữa S và P sao cho trong hệ thức này không có m.

Bài 5: Cho phương trình x² – 6x + m = 0. Tính giá trị của m, biết rằng phương trình có hai nghiệm x1, x2 thỏa mãn điều kiện x1 – x2 = 4.

Bài 6: Cho phương trình bậc hai: 2x² + (2m – 1)x +m – 1 =0

Chứng minh rằng phương trình luôn luôn có nghiệm với mọi m.

Xác định m để phương trình có nghiệm kép. Tìm nghiệm đó.

Xác định m để phương trình có hai nghiệm phan biệt x1, x2 thỏa mãn -1 < x1 < x2 < 1

Trong trường hợp phương trình có hai nghiệm phân biệt x1, x2, hãy lập một hệ thức giữa x1, x2 không có m.

Bài 7: Cho f(x) = x² – 2(m +2)x+ 6m +1

Chứng minh rằng pt f(x) = 0 luôn nghiệm với mọi m.

Đặt x = t + 2; tình f(x) theo t. Từ đó tìm điều kiện của m để phương trình f(x) = 0 có hai nghiệm phân biệt lớn hơn 2.

Bài 8: Cho tam thức bậc hai f(x) = ax² + bx +c thỏa mãn điều kiện Ι f(x)Ι  =< 1 với mọi x ∈ { -1; 1 }. Tìm GTNN của biểu thức A= 4a² + 3b².

Bài 9: Cho phương trình (x²)² – 13 x² + m = 0. Tìm các giá trị của m để phương trình:

a. Có bốn nghiệm phân biệt.

b. Có ba nghiệm phân biệt.

c. Có hai nghiệm phân biệt.

d. Có một nghiệm

e. Vô nghiệm.

Trên đây là toàn bộ cách tính delta, delta phẩy thông qua những công thức đi kèm. Các dạng toán trên là dạng cơ bản nhất trong chương trình học, do đó bạn cần lưu ý tránh xảy ra các sai sót đáng tiếc.